Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(33): 18231-18239, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34097796

RESUMO

Protein crystallography (PX) is widely used to drive advanced stages of drug optimization or to discover medicinal chemistry starting points by fragment soaking. However, recent progress in PX could allow for a more integrated role into early drug discovery. Here, we demonstrate for the first time the interplay of high throughput synthesis and high throughput PX. We describe a practical multicomponent reaction approach to acrylamides and -esters from diverse building blocks suitable for mmol scale synthesis on 96-well format and on a high-throughput nanoscale format in a highly automated fashion. High-throughput PX of our libraries efficiently yielded potent covalent inhibitors of the main protease of the COVID-19 causing agent, SARS-CoV-2. Our results demonstrate, that the marriage of in situ HT synthesis of (covalent) libraires and HT PX has the potential to accelerate hit finding and to provide meaningful strategies for medicinal chemistry projects.


Assuntos
Proteases 3C de Coronavírus/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Acrilamidas/síntese química , Acrilamidas/metabolismo , Acrilatos/síntese química , Acrilatos/metabolismo , Domínio Catalítico , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Cristalografia por Raios X , Inibidores de Cisteína Proteinase/síntese química , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Ligação Proteica , SARS-CoV-2/química , Bibliotecas de Moléculas Pequenas/síntese química
2.
Sci Adv ; 7(6)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33536213

RESUMO

The area of covalent inhibitors is gaining momentum due to recently introduced clinical drugs, but libraries of these compounds are scarce. Multicomponent reaction (MCR) chemistry is well known for its easy access to a very large and diverse chemical space. Here, we show that MCRs are highly suitable to generate libraries of electrophiles based on different scaffolds and three-dimensional shapes and highly compatible with multiple functional groups. According to the building block principle of MCR, acrylamide, acrylic acid ester, sulfurylfluoride, chloroacetic acid amide, nitrile, and α,ß-unsaturated sulfonamide warheads can be easily incorporated into many different scaffolds. We show examples of each electrophile on 10 different scaffolds on a preparative scale as well as in a high-throughput synthesis mode on a nanoscale to produce libraries of potential covalent binders in a resource- and time-saving manner. Our operational procedure is simple, mild, and step economical to facilitate future covalent library synthesis.

3.
ChemMedChem ; 15(8): 680-684, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32187447

RESUMO

Pharmacophore searches that include anchors, fragments contributing above average to receptor binding, combined with one-step syntheses are a powerful approach for the fast discovery of novel bioactive molecules. Here, we are presenting a pipeline for the rapid and efficient discovery of aspartyl protease inhibitors. First, we hypothesized that hydrazine could be a multi-valent warhead to interact with the active site Asp carboxylic acids. We incorporated the hydrazine anchor in a multicomponent reaction and created a large virtual library of hydrazine derivatives synthetically accessible in one-step. Next, we performed anchor-based pharmacophore screening of the libraries and resynthesized top-ranked compounds. The inhibitory potency of the molecules was finally assessed by an enzyme activity assay and the binding mode confirmed by several soaked crystal structures supporting the validity of the hypothesis and approach. The herein reported pipeline of tools will be of general value for the rapid generation of receptor binders beyond Asp proteases.


Assuntos
Ácido Aspártico Proteases/antagonistas & inibidores , Descoberta de Drogas , Hidrazinas/farmacologia , Inibidores de Proteases/farmacologia , Ácido Aspártico Proteases/metabolismo , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química
4.
RSC Med Chem ; 11(8): 876-884, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33479682

RESUMO

Covalent inhibitors are recognized as an important component in drug discovery and therapeutics. Since the first appearance of covalent inhibitors in the late 18th century, the field has advanced significantly and currently about 30% of the marketed drugs are covalent inhibitors. The numerous advantages of covalent inhibitors are counteracting the initial concerns regarding potential off-target toxicity. Thus, continuous research, especially for cancer targets is reported. The aim of this review is to provide a short historic overview and focus on recently developed covalent inhibitors (2011-2019), including structural aspects and examples on challenging targets.

5.
Org Lett ; 20(13): 3871-3874, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29943994

RESUMO

A series of unprecedented tetrazole-linked imidazo[1,5- a]pyridines are synthesized from simple and readily available building blocks. The reaction sequence involves an azido-Ugi-deprotection reaction followed by an acetic anhydride-mediated N-acylation-cyclization process to afford the target heterocycle. Furthermore, the scope of the methodology was extended to diverse R3-substitutions by employing commercial anhydrides, acid chlorides, and acids as an acyl component. The scope for the postmodification reactions are explored and the usefulness of the synthesis is exemplified by an improved three-step synthesis of a guanylate cyclase stimulator.


Assuntos
Piridinas/síntese química , Acilação , Anidridos , Ciclização , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...